A novel method of unmanned surface vehicle autonomous cruise

Author:

Xie Shaorong,Wu Peng,Liu Hengli,Yan Peng,Li Xiaomao,Luo Jun,Li Qingmei

Abstract

Purpose – This paper aims to propose a new method for combining global path planning with local path planning, to provide an efficient solution for unmanned surface vehicle (USV) path planning despite the changeable environment. Path planning is the key issue of USV navigation. A lot of research works were done on the global and local path planning. However, little attention was given to combining global path planning with local path planning. Design/methodology/approach – A search of shortcut Dijkstra algorithm was used to control the USV in the global path planning. When the USV encounters unknown obstacles, it switches to our modified artificial potential field (APF) algorithm for local path planning. The combinatorial method improves the approach of USV path planning in complex environment. Findings – The method in this paper offers a solution to the issue of path planning in changeable or unchangeable environment, and was confirmed by simulations and experiments. The USV follows the global path based on the search of shortcut Dijkstra algorithm. Both USV achieves obstacle avoidances in the local region based on the modified APF algorithm after obstacle detection. Both the simulation and experimental results demonstrate that the combinatorial path planning method is more efficient in the complex environment. Originality/value – This paper proposes a new path planning method for USV in changeable environment. The proposed method is capable of efficient navigation in changeable and unchangeable environment.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3