Analysis on the steady state performance of a multi pad externally adjustable fluid film bearing

Author:

Hariharan Girish,Pai Raghuvir

Abstract

Purpose This study aims to investigate the performance characteristics of an externally adjustable bearing with multiple pads in steady state conditions. The proposed adjustable bearing geometry can effectively control the hydrodynamic operation in bearing clearances by adjusting the pads in radial and tilt directions. These pad adjustments have a significant role in improving the bearing characteristics such as load capacity, attitude angle, side leakage, friction variable and Sommerfeld number, which will be analysed in this paper. Design/methodology/approach The adjustable bearing is designed with circumferentially spaced four bearing pads subjected to similar radial and tilt adjustments. Tilt angles are applied along the leading edges of bearing pads. A modified film thickness equation is used to incorporate the pad adjustments and accurately predict the variation in film profile. Finite difference approximation is adopted to solve the Reynolds equation and discretize the fluid film domain. Findings For negative radial and tilt adjustments, higher hydrodynamic pressures are generated in bearing clearances, which increases the bearing load capacity at different eccentricity ratios. From comparative analysis for different pad adjustments, superior bearing performance is observed for bearing pads under negative radial and negative tilt adjustments. Originality/value This research presents a detailed theoretical approach to analyse the performance capability of a four pad adjustable bearing geometry, which is not available in literatures. Improved bearing performances with negative pad adjustments can attract bearing designers to implement the proposed adjustability-bearing concept in rotating machineries.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference21 articles.

1. A journal bearing with variable geometry for the reduction of the maximum amplitude during passage through resonance;Journal of Vibration and Acoustics,2012

2. A journal bearing with variable geometry for the suppression of vibrations in rotating shafts: simulation, design, construction and experiment;Mechanical Systems and Signal Processing,2015

3. Improving stability and operation of turbine rotors using adjustable journal bearings;Tribology International,2016

4. Modal interaction and vibration suppression in industrial turbines using adjustable journal bearings;Journal of Physics: Conference Series,2016

5. Chasalevris, A. and Dohnal, F. (2018), “Suppressing vibrations of shafts using adjustable bearings”, US Patent 2018/0003075A1.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3