A Journal Bearing With Variable Geometry for the Reduction of the Maximum Amplitude During Passage Through Resonance

Author:

Chasalevris Athanasios1,Dohnal Fadi2

Affiliation:

1. e-mail:

2. e-mail: Darmstadt University of Technology, Strukturdynamik Petersenstrasse 30, 64287 Darmstadt, Germany

Abstract

A concept for a journal bearing with variable stiffness and damping properties is developed in order to decrease the vibration amplitude of a rotor-journal bearing system during passage through resonance. The introduction of an additional fluid film thickness in the bearing is proposed in this work in order to alter the dynamic properties in the bearing. The bearing ring is divided into two parts with the upper part being fixed with the housing and the lower part being flexibly mounted by a preloaded spring in parallel with a viscous damper. This allows relative motion between the two parts of the bearing ring. The relative motion introduces an additional fluid film zone in the bearing under the passive displacement of the lower part due to increased impedance forces that are developed in the lubricant film at resonance operation. The general concept is to change the system's damping and stiffness coefficients using this extra fluid film thickness only when the system passes through its critical speed in order to quench the vibration amplitude. For rotational speeds outside of the resonant regions, the bearing is considered to be fixed in order to behave as it was designed under the nominal loading operational conditions.

Publisher

ASME International

Subject

General Engineering

Reference18 articles.

1. Progress in Rolling Bearing Vibration Research and Control;ASLE Trans.,1965

2. Sound and Vibration of Rolling Bearing;Mech. Design,1962

3. The Effect of Support Flexibility and Damping on the Synchronous Response of a Single-Mass Flexible Rotor;ASME J. Eng. Ind.,1972

4. Effects of Flexible Mounting and Damping on the Synchronous Response of a Rotor-Shaft System;ASME J. Appl. Mech.,1976

5. Vibration Control of Rotating Shaft With Self-Optimizing Support System;Trans. JSME,1983

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3