Characterization of path loss model for wireless communication channel modelling

Author:

Sirdeshpande Nandakishor,Udupi Vishwanath

Abstract

PurposeWireless communication channel provides a wide area of applications in the field of communication, distributed sensor network and so on. The prominence of the wireless communication channel is because of its robust nature and the sustainability for the precise ranging and the localization. The precision and accuracy of the wireless communication channel largely depend on the localization. The development of the wireless communication channel with improved benefits needs the accurate channel model.Design/methodology/approachThis paper characterizes the tangential path loss model in the WINNER based wireless communication channel model. The measurements taken in the WINNER channel model are compared with the tangential path loss characterized WINNER Channel model.FindingsThe model operates well over the varying antenna orientations, measurement condition and the propagation condition. The proposed tangential path loss model is performing well over the various outdoor scenarios.Originality/valueThe proposed characterization shows change in the small-scale parameters (SSP), such as power, delay, angle of arrival and angle of departure as well as the large-scale parameters (LSP), such as RMS delay spread, shadowing, path loss and Ricean factor associated with the model.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

Reference37 articles.

1. Comparison of empirical propagation path loss models for fixed wireless access systems;Proceedings of IEEE Conference on Vehicular Technology,2005

2. Propagation measurements and models for wireless communications channels;IEEE Communication Magazine,2002

3. A microcellular ray-tracing propagation model and evaluation of its narrowband and wideband predictions;IEEE Journal on Selected Areas in Communications, Wireless Communications Series,2000

4. A review of radio channel models for body centric communications;Radio Science,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3