Analysis of 5G channel loss and its influencing factors in substation based on ray tracing algorithm

Author:

Li Yifeng1,Wang Shuang1,Tang Bo12ORCID,Zhang Longbin1ORCID,Shang Zhiyu1,Liu Xingfa3

Affiliation:

1. College of Electrical Engineering and New Energy China Three Gorges University Yichang China

2. Hubei Provincial Engineering Technology Research Center for Power Transmission Line Yichang China

3. China Electric Power Research Institute State Grid Corporation of China Wuhan China

Abstract

Abstract5G (fifth generation) signals have small coverage and poor stability, and 5G channels are prone to loss in substations densely populated with metal equipment. Due to the particularity of the spatial layout in the substation, traditional physical or statistical channel models cannot accurately calculate the 5G channel loss in the substation. Therefore, this paper introduces the basic idea of ray tracing algorithm for studying ray propagation. Based on the geometric optics theory of ray propagation, the effective channel path of 5G signal in substation is found. Through the electromagnetic reflection theory and consistent diffraction theory, the energy loss caused by signal reflection and diffraction is calculated. Combined with the relationship between the free space loss of 5G signal on the transceiver path and the change of electric field, the solution method of 5G channel loss in substation is deduced. According to this method, (the influence of signal receiver height, 5G antenna height and its spatial position in horizontal and vertical directions on 5G channel loss of substation is studied in turn. By optimizing the layout of communication facilities according to the influence law, the reliability of 5G channel in substation can be realized).

Publisher

Institution of Engineering and Technology (IET)

Subject

General Engineering,Energy Engineering and Power Technology,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3