Free convection in a square cavity filled with a Casson fluid under the effects of thermal radiation and viscous dissipation

Author:

Pop Ioan,Sheremet Mikhail

Abstract

Purpose The main purpose of this numerical work is to study free convection of Casson fluid in a square differentially heated cavity taking into account the effects of thermal radiation and viscous dissipation. Design/methodology/approach The cavity is heated from the left vertical wall and cooled from the right vertical wall while horizontal walls are insulated. The governing partial differential equations invoking Rosseland approximation for thermal radiation with corresponding boundary conditions have been solved by finite difference method of the second-order accuracy using dimensionless variables stream function, vorticity and temperature. The governing parameters are Rayleigh number (Ra = 105), Prandtl number (Pr = 0.1, 0.7, 7.0), Casson parameter (γ = 0.1-5.0), radiation parameter (Rd = 0-10), Eckert number (Ec = 0-1.0). Findings It is found that an increase in Casson parameter leads to the heat transfer enhancement and fluid flow intensification. While a growth of Eckert number illustrates the heat transfer suppression. Originality/value The originality of this work is to analyze for the first-time natural convective fluid flow and heat transfer of a Casson fluid within a differentially heated square cavity under the effects of thermal radiation and viscous dissipation. The results would benefit scientists and engineers to become familiar with the flow behavior of such non-Newtonian fluids, and the way to predict the properties of this flow for possibility of using this specific fluid in various engineering and industrial processes, such as chyme movement in intestine, blood flows, lubrication processes with grease and heavy oils, glass blowing, electronic chips, food stuff, slurries, etc.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference37 articles.

1. Exact solution for boundary layer flow of casson fluid over a permeable stretching/shrinking sheet;Zamm - Journal of Applied Mathematics and Mechanics/Zeitschrift Für Angewandte Mathematik Und Mechanik),2014

2. Magnetic field effect on the unsteady natural convection in a right-angle trapezoidal cavity filled with a nanofluid: Buongiorno’s;International Journal of Numerical Methods for Heat & Fluid Flow,2015

3. Analysis of the Casson and Carreau-Yasuda non-Newtonian blood models in steady and oscillatory flow using the lattice Boltzmann method;Physics of Fluids,2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3