Magnetic field effect on the unsteady natural convection in a right-angle trapezoidal cavity filled with a nanofluid

Author:

Bondareva N.S.,Sheremet M. A.,Pop I.

Abstract

Purpose – Unsteady natural convection of water-based nanofluid within a right-angle trapezoidal cavity under the influence of a uniform inclined magnetic field using the mathematical nanofluid model proposed by Buongiorno is presented. The paper aims to discuss these issues. Design/methodology/approach – The left vertical and right inclined walls of the enclosure are kept at constant but different temperatures whereas the top and bottom horizontal walls are adiabatic. All boundaries are assumed to be impermeable to the base fluid and to nanoparticles. In order to study the behavior of the nanofluid, a non-homogeneous Buongiorno’s mathematical model is taken into account. The physical problems are represented mathematically by a set of partial differential equations along with the corresponding boundary conditions. By using an implicit finite difference scheme the dimensionless governing equations are numerically solved. Findings – The governing parameters are the Rayleigh, Hartmann and Lewis numbers along with the inclination angle of the magnetic field relative to the gravity vector, the aspect ratio and the dimensionless time. The effects of these parameters on the average Nusselt number along the hot wall, as well as on the developments of streamlines, isotherms and isoconcentrations are analyzed. The results show that key parameters have substantial effects on the flow, heat and mass transfer characteristics. Originality/value – The present results are new and original for the heat transfer and fluid flow in a right-angle trapezoidal cavity under the influence of a uniform inclined magnetic field using the mathematical nanofluid model proposed by Buongiorno. The results would benefit scientists and engineers to become familiar with the flow behavior of such nanofluids, and the way to predict the properties of this flow for possibility of using nanofluids in advanced nuclear systems, in industrial sectors including transportation, power generation, chemical sectors, ventilation, air-conditioning, etc.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3