Application of support vector machines for accurate prediction of convection heat transfer coefficient of nanofluids through circular pipes

Author:

Safdari Shadloo Mostafa

Abstract

Purpose Convection is one of the main heat transfer mechanisms in both high to low temperature media. The accurate convection heat transfer coefficient (HTC) value is required for exact prediction of heat transfer. As convection HTC depends on many variables including fluid properties, flow hydrodynamics, surface geometry and operating and boundary conditions, among others, its accurate estimation is often too hard. Homogeneous dispersion of nanoparticles in a base fluid (nanofluids) that found high popularities during the past two decades has also increased the level of this complexity. Therefore, this study aims to show the application of least-square support vector machines (LS-SVM) for prediction of convection heat transfer coefficient of nanofluids through circular pipes as an accurate alternative way and draw a clear path for future researches in the field. Design/methodology/approach The proposed LS-SVM model is developed using a relatively huge databank, including 253 experimental data sets. The predictive performance of this intelligent approach is validated using both experimental data and empirical correlations in the literature. Findings The results show that the LS-SVM paradigm with a radial basis kernel outperforms all other considered approaches. It presents an absolute average relative deviation of 2.47% and the regression coefficient (R2) of 0.99935 for the estimation of the experimental databank. The proposed smart paradigm expedites the procedure of estimation of convection HTC of nanofluid flow inside circular pipes. Originality/value Therefore, the focus of the current study is concentrated on the estimation of convection HTC of nanofluid flow through circular pipes using the LS-SVM. Indeed, this estimation is done using operating conditions and some simply measured characteristics of nanoparticle, base fluid and nanofluid.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3