Multi-level framework for anomaly detection in social networking

Author:

Khamparia Aditya,Pande Sagar,Gupta Deepak,Khanna Ashish,Sangaiah Arun KumarORCID

Abstract

Purpose The purpose of this paper is to propose a structured multilevel system that will distinguish the anomalies present in different online social networks (OSN). Design/methodology/approach Author first reviewed the related work, and then, the research model designed was explained. Furthermore, the details regarding Levels 1 and 2 were narrated. Findings By using the proposed technique, FScore obtained for Twitter and Facebook data set was 96.22 and 94.63, respectively. Research limitations/implications Four data sets were used for the experiment and the acquired outcomes demonstrate enhancement over the current existing frameworks. Originality/value This paper designed a multilevel framework that can be used to detect the anomalies present in the OSN.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

Reference44 articles.

1. Akoglu, L., McGlohon, M. and Oddball, F.C. (2010), “Spotting anomalies in weighted graphs”, Advances in Knowledge Discovery and Data Mining, Springer, Berlin and Heidelberg, pp. 410-421.

2. A survey of clustering data mining techniques;Group Multidimens Data,2006

3. Bonacich, P. (1972), “Factoring and weighting approaches to status scores and clique identification”, Journal of Mathematical Sociology, Vol. 2 No. 1, pp. 113-120.

4. Bonacich, P. and Lloyd, P. (2004), “Calculating status with negative relations”, Social Networks, Vol. 26 No. 4, pp. 331-338.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3