Analyzing the Internet financial market risk management using data mining and deep learning methods

Author:

Feng RanORCID,Qu Xiaoe

Abstract

PurposeTo identify and analyze the occurrence of Internet financial market risk, data mining technology is combined with deep learning to process and analyze. The market risk management of the Internet is to improve the management level of Internet financial risk, improve the policy of Internet financial supervision and promote the healthy development of Internet finance.Design/methodology/approachIn this exploration, data mining technology is combined with deep learning to mine the Internet financial data, warn the potential risks in the market and provide targeted risk management measures. Therefore, in this article, to improve the application ability of data mining in dealing with Internet financial risk management, the radial basis function (RBF) neural network algorithm optimized by ant colony optimization (ACO) is proposed.FindingsThe results show that the actual error of the ACO optimized RBF neural network is 0.249, which is 0.149 different from the target error, indicating that the optimized algorithm can make the calculation results more accurate. The fitting results of the RBF neural network and ACO optimized RBF neural network for nonlinear function are compared. Compared with the performance of other algorithms, the error of ACO optimized RBF neural network is 0.249, the running time is 2.212 s, and the number of iterations is 36, which is far less than the actual results of the other two algorithms.Originality/valueThe optimized algorithm has a better spatial mapping and generalization ability and can get higher accuracy in short-term training. Therefore, the ACO optimized RBF neural network algorithm designed in this exploration has a high accuracy for the prediction of Internet financial market risk.

Publisher

Emerald

Subject

Information Systems,Management of Technology and Innovation,General Decision Sciences

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3