R-DDQN: Optimizing Algorithmic Trading Strategies Using a Reward Network in a Double DQN

Author:

Zhou Chujin1ORCID,Huang Yuling1,Cui Kai1ORCID,Lu Xiaoping1ORCID

Affiliation:

1. School of Computer Science and Engineering, Macau University of Science and Technology, Macao, China

Abstract

Algorithmic trading is playing an increasingly important role in the financial market, achieving more efficient trading strategies by replacing human decision-making. Among numerous trading algorithms, deep reinforcement learning is gradually replacing traditional high-frequency trading strategies and has become a mainstream research direction in the field of algorithmic trading. This paper introduces a novel approach that leverages reinforcement learning with human feedback (RLHF) within the double DQN algorithm. Traditional reward functions in algorithmic trading heavily rely on expert knowledge, posing challenges in their design and implementation. To tackle this, the reward-driven double DQN (R-DDQN) algorithm is proposed, integrating human feedback via a reward function network trained on expert demonstrations. Additionally, a classification-based training method is employed for optimizing the reward function network. The experiments, conducted on datasets including HSI, IXIC, SP500, GOOGL, MSFT, and INTC, show that the proposed method outperforms all baselines across six datasets and achieves a maximum cumulative return of 1502% within 24 months.

Funder

Science and Technology Development Fund, Macau SAR

Publisher

MDPI AG

Reference42 articles.

1. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., and Gelly, S. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv.

2. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B. (2021, January 11–17). Swin transformer: Hierarchical vision transformer using shifted windows. Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada.

3. He, K., Zhang, X., Ren, S., and Sun, J. (2016, January 27–30). Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA.

4. Devlin, J., Chang, M.W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv.

5. Language models are few-shot learners;Brown;Adv. Neural Inf. Process. Syst.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3