Investigations on the effect of oil quality on gearboxes using neural network predictors

Author:

Kalkat Menderes

Abstract

Purpose – The purpose of this paper was to perform an experimental investigation to analyze vibration and noise of unloaded gearbox with different oil quality. All motor-driven machinery used in the modern world can develop faults. The maintenance plans include analyzing the external relevant information of critical components, in order to evaluate its internal state. From the beginning of the twentieth century, different technologies have been used to process signals of dynamical systems. Design/methodology/approach – A proposed neural network (NN) is also employed to predict vibration parameters of the experimental test rig. Moreover, four types of oils are used for gearbox to predict reliable oil. Vibration signals extracted from rotating parts of machineries carry lot many information within them about the condition of the operating machine. Further processing of these raw vibration signatures measured at a convenient location of the machine unravels the condition of the component or the assembly under study. The experimental stand for testing an unloaded gearbox is composed by actuated direct current (DC) driving system. Findings – This paper deals with the effectiveness of wavelet-based features for fault diagnosis of a gearbox using two types of artificial neural networks (ANNs) and stress analyzed with computer-based software ANNs. The results improved that the proposed NN has superior performance to adapt experimental results. Practical implications – This paper is one such attempt to apply machine learning methods like ANN. This work deals with extraction of wavelet features from the vibration data of a gearbox system and classification of gear faults using ANNs. Originality/value – These kind of NN-based approaches are novel approaches to predict real-time vibration and acceleration parameters of unloaded gearbox with five types of oils. Also, the investigation contains new information about studied process, containing elements of novelty.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference28 articles.

1. AGARD CP 369 (1984), Gears and Power Transmission System for Helicopter Turboprops , Defense Technical Information Center, pp. 29/1-129/10.

2. Burgess, C.J.C. (1998), “A tutorial on support vector machines for pattern recognition”, Data Mining and Knowledge Discovery , Vol. 2 No. 2, pp. 955-974.

3. Cameron, B.G. and Stuckey, M.J. (1994), “A review of transmission vibration monitoring at Westland Helicopter Ltd”, Proceedings of the 20th European Rotorcraft Forum, Amsterdam, Paper No. 116, pp. 16/1-116/16.

4. Cempel, C. (1991), Vibroacoustic Condition Monitoring , Ellis Horwood, Chichester.

5. Chui, C.H.K. (1992a), Wavelets Analysis and its Applications: An Introduction to Wavelets , Academic Press, Boston, MA, Vol. 1.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3