Recent Progress of Machine Learning Algorithms for the Oil and Lubricant Industry

Author:

Rahman Md Hafizur1,Shahriar Sadat2,Menezes Pradeep L.1ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Nevada, Reno, NV 89557, USA

2. Department of Computer Science, University of Houston, Houston, TX 77204, USA

Abstract

Machine learning (ML) algorithms have brought about a revolution in many industries where otherwise operation time, cost, and safety would have been compromised. Likewise, in lubrication research, ML has been utilized on many occasions. This review provides an in-depth understanding of seven ML algorithms from a tribological perspective. More specifically, it presents a comprehensive overview of recent advancements in ML applied to lubrication research, organized into four distinct categories. The first category, experimental parameter prediction, highlights the significant contributions of artificial neural networks (ANNs) in accurately forecasting operating conditions related to friction and wear. These predictions offer valuable insights that aid in forensic preparation. Discriminant analysis, Bayesian modeling, and transfer learning approaches have also been used to predict experimental parameters. Second, to predict the lubrication film thickness and identify the lubrication regime, algorithms such as logistic regression and ANN were useful. Such predictions provide up to 99.25% accuracy. Third, to predict the friction and wear for a given experimental condition, support vector machine (SVM), polynomial regression, and ANN offered an accuracy above 93%. Finally, for condition monitoring for bearings, gearboxes, gear trains, and similar critical situations where regular in-person inspection is difficult, Naïve Bayes, SVM, decision trees, and ANN were utilized to predict the safe life of lubricants. This review highlighted these four aspects with state-of-the-art examples and discussed the current situation and projected future possibilities of lubricant design facilitated by ML techniques.

Funder

Department of Mechanical Engineering at the University of Nevada at Reno

Publisher

MDPI AG

Subject

Surfaces, Coatings and Films,Mechanical Engineering

Reference115 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3