Robust optimization approach to production system with failure in rework and breakdown under uncertainty: evolutionary methods

Author:

Rabbani Masoud,Manavizadeh Neda,Hosseini Aghozi Niloofar Sadat

Abstract

Purpose – This paper aims to consider a multi-site production planning problem with failure in rework and breakdown subject to demand uncertainty. Design/methodology/approach – In this new mathematical model, at first, a feasible range for production time is found, and then the model is rewritten considering the demand uncertainty and robust optimization techniques. Here, three evolutionary methods are presented: robust particle swarm optimization, robust genetic algorithm (RGA) and robust simulated annealing with the ability of handling uncertainties. Firstly, the proposed mathematical model is validated by solving a problem in the LINGO environment. Afterwards, to compare and find the efficiency of the proposed evolutionary methods, some large-size test problems are solved. Findings – The results show that the proposed models can prepare a promising approach to fulfill an efficient production planning in multi-site production planning. Results obtained by comparing the three proposed algorithms demonstrate that the presented RGA has better and more efficient solutions. Originality/value – Considering the robust optimization approach to production system with failure in rework and breakdown under uncertainty.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3