Shape optimization in acoustic–structure interaction

Author:

Kliewe Philipp,Laurain AntoineORCID,Schmidt Kersten

Abstract

PurposeMotivated by the acoustics of motor vehicles, a coupled fluid–solid system is considered. The air pressure is modeled by the Helmholtz equation, and the structure displacement is described by elastodynamic equations. The acoustic–structure interaction is modeled by coupling conditions on the common interface. First, the existence and uniqueness of solutions are investigated, and then, after recalling fundamental notions of shape optimization, the tensor form of the distributed shape derivative is obtained for the coupled problem. It is then applied to the minimization of the sound pressure by variation of the structure shape through the positioning of beads.Design/methodology/approachThe existence and uniqueness of solutions up to eigenfrequencies are shown by the Fredholm–Riesz–Schauder theory using a novel decomposition into an isomorphism and a compact operator. For the design optimization, the distributed shape derivative is obtained using the averaged adjoint method. It is then used in a closed 3D optimization process of the position of a bead for noise reduction. In this process, the C++ library concepts are used to solve the differential equations on hexahedral meshes with the finite element method of higher order.FindingsThe existence and uniqueness of solutions have been shown for the case without absorption, where the given proof allows for extension to the case with absorption in the domain or via boundary conditions. The theoretical results show that the averaged adjoint can be applied to compute distributed shape derivatives in the context of acoustic–structure interaction. The numerical results show that the distributed shape derivative can be used to reduce the sound pressure at a chosen frequency via rigid motions of a nonsmooth shape.Originality/valueThe proof of shape differentiability and the calculation of the distributed shape derivative in tensor form allows to consider nonsmooth shapes for the optimization, which is particularly relevant for the optimal placement of beads or stampings in a structural-acoustic system.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3