Abstract
PurposeIntegrality of surface mesh is requisite for computational engineering. Nonwatertight meshes with holes can bring inconvenience to applications. Unlike simple modeling or visualization, the downstream industrial application scenarios put forward higher requirements for hole-filling, although many related algorithms have been developed. This study aims at the hole-filling issue in industrial application scenarios.Design/methodology/approachThis algorithm overcomes some inherent weakness of general methods and generates a high-level resulting mesh. Initially, the primitive hole boundary is filled with a more appropriate triangulation which introduces fewer geometric errors. And in order for better performances on shape approximation of the background mesh, the algorithm also refines the initial triangulation with topology optimization. When obtaining the background mesh defining the geometry and size field, spheres on it are packed to determine the vertex configuration and then the resulting high-level mesh is generated.FindingsThrough emphasizing geometry recovery and mesh quality, the proposed algorithm works well in hole-filling in industrial application scenarios. Many experimental results demonstrate the reliability and the performance of the algorithm. And the processed meshes are capable of being used for industrial simulation computations directly.Originality/valueThis paper makes input meshes more adaptable for solving programs through local modifications on meshes and perfects the preprocessing technology of finite element analysis (FEA).
Subject
Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software
Reference50 articles.
1. A lightweight approach to repairing digitized polygon meshes;Visual Computer,2010
2. Surface smoothing for topological optimized 3d models;Structural and Multidisciplinary Optimization,2021
3. Automatic restoration of polygon models;Acm Transactions on Graphics,2005
4. Filling holes in triangular meshes by curve unfolding,2009
5. Mesh repairing using topology graphs;Journal of Computational Design and Engineering,2021
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献