Surface smoothing for topological optimized 3D models

Author:

Bacciaglia AntonioORCID,Ceruti AlessandroORCID,Liverani AlfredoORCID

Abstract

AbstractThe topology optimization methodology is widely applied in industrial engineering to design lightweight and efficient components. Despite that, many techniques based on structural optimization return a digital model that is far from being directly manufactured, mainly because of surface noise given by spikes and peaks on the component. For this reason, mesh post-processing is needed. Surface smoothing is one of the numerical procedures that can be applied to a triangulated mesh file to return a more appealing geometry. In literature, there are many smoothing algorithms available, but especially those based on the modification of vertex position suffer from high mesh shrinkage and loss of important geometry features like holes and surface planarity. For these reasons, an improved vertex-based algorithm based on Vollmer’s surface smoothing has been developed and introduced in this work along with two case studies included to evaluate its performances compared with existent algorithms. The innovative approach herein developed contains some sub-routines to mitigate the issues of common algorithms, and confirms to be efficient and useful in a real-life industrial context. Thanks to the developed functions able to recognize the geometry feature to be frozen during the smoothing process, the user’s intervention is not required to guide the procedure to get proper results.

Funder

Alma Mater Studiorum - Università di Bologna

Publisher

Springer Science and Business Media LLC

Subject

Control and Optimization,Computer Graphics and Computer-Aided Design,Computer Science Applications,Control and Systems Engineering,Software

Reference35 articles.

1. Bacciaglia A, Ceruti A, Liverani A (2019) A systematic review of voxelization method in additive manufacturing. Mech Ind 20(6):630. https://doi.org/10.1051/meca/2019058

2. Lecture Notes in Mechanical Engineering;A Bacciaglia,2020

3. Belyaev A, Ohtake Y (2003) A comparison of mesh smoothing methods. In:Israel-Korea Bi-national conference on geometric modeling and computer graphics, pp 83–87. Tel Aviv University, Tel Aviv

4. Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202. https://doi.org/10.1007/BF01650949

5. Bendsøe MP, Sigmund O (2011) Topology optimization: theory, methods, and applications. 2nd edn, Corrected printing. Engineering Online Library. Springer, Berlin

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3