Nonlinear temperature and thermal stress analysis of annular fins with time dependent boundary condition

Author:

Lee Sen-Yung,Chou Li-Kuo,Chen Chao Kuang

Abstract

PurposeThe purpose of this paper is to propose the Laplace Adomian Decomposition Method (LADM) for studying the nonlinear temperature and thermal stress analysis of annular fins with time-dependent boundary condition.Design/methodology/approachThe nonlinear behavior of temperature and thermal stress distribution in an annular fin with rectangular profile subjected to time-dependent periodic temperature variations at the root is studied by the LADM. The radiation effect is considered. The convective heat transfer coefficient is considered as a temperature function.FindingsThe proposed solution method is helpful in overcoming the computational bottleneck commonly encountered in industry and in academia. The results show that the circumferential stress at the root of the fin will be important in the fatigue analysis.Originality/valueThis study presents an effective solution method to analyze the nonlinear behavior of temperature and thermal stress distribution in an annular fin with rectangular profile subjected to time-dependent periodic temperature variations at the root by using LADM.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference20 articles.

1. Convergence of Adomian’s method applied to differential equations;Computers & Mathematics with Applications,1994

2. Adomian decomposition method for heat conduction in an annular fin of hyperbolic profile with temperature dependent thermal conductivity;Journal of Thermal Science and Technology,2013

3. Steady and transient numerical analysis of the performance of annular fins;International Journal of Energy Research,2001

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3