Heat transfer enhancement in microchannels using ribs and secondary flows

Author:

Paramanandam Karthikeyan,S. Venkatachalapathy,Srinivasan Balamurugan

Abstract

Purpose The purpose of this paper is to study the flow and heat transfer characteristics of microchannel heatsinks with ribs, cavities and secondary channels. The influence of length and width of the ribs on heat transfer enhancement, secondary flows, flow distribution and temperature distribution are examined at different Reynolds numbers. The effectiveness of each heatsink is evaluated using the performance factor. Design/methodology/approach A three-dimensional solid-fluid conjugate heat transfer numerical model is used to study the flow and heat transfer characteristics in microchannels. One symmetrical channel is adopted for the simulation to reduce the computational cost and time. Flow inside the channels is assumed to be single-phase and laminar. The governing equations are solved using finite volume method. Findings The numerical results are analyzed in terms of average Nusselt number ratio, average base temperature, friction factor ratio, pressure variation inside the channel, temperature distribution, velocity distribution inside the channel, mass flow rate distribution inside the secondary channels and performance factor of each microchannels. Results indicate that impact of rib width is higher in enhancing the heat transfer when compared with its length but with a penalty on the pressure drop. The combined effects of secondary channels, ribs and cavities helps to lower the temperature of the microchannel heat sink and enhances the heat transfer rate. Practical implications The fabrication of microchannels are complex, but recent advancements in the additive manufacturing techniques makes the fabrication of the design considered in this numerical study feasible. Originality/value The proposed microchannel heatsink can be used in practical applications to reduce the thermal resistance, and it augments the heat transfer rate when compared with the baseline design.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference26 articles.

1. Thermal enhancement of microchannel heat sink using rib surface refinements;Numerical Heat Transfer, Part A: Applications,2019

2. Investigation of flow distribution in microchannels heat sinks;Heat Transfer Engineering,2009

3. Effect of sawtooth roughness on pressure drop and turbulent transition in microchannels;Heat Transfer Engineering,2007

4. Numerical simulation of pressure drop for three-dimensional rectangular microchannels;Engineering Computations,2018

5. A parametric investigation of heat transfer and friction characteristics in cylindrical oblique fin minichannel heat sink;International Journal of Heat and Mass Transfer,2014

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3