Numerical Simulation and Application of a Channel Heat Sink with Diamond Ribs

Author:

Zhang Dongxu12,Liu Guoqiang12,Lai Yongkang12,Lin Xiaohui34,Cai Weihuang5

Affiliation:

1. School of Public Health, Xiamen University, Xiamen 361005, China

2. State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen 361005, China

3. School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China

4. Xiamen Key Laboratory of Robot Systems and Digital Manufacturing, Xiamen 361024, China

5. School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China

Abstract

This paper presents a channel radiator with ribbed ribs and primarily investigates the fluid flow and heat-transfer characteristics of the channel radiator. A three-dimensional numerical simulation of the radiator’s pressure-drop and heat-transfer process was conducted using the finite volume method. A comparison between the experimental data and the simulation results demonstrates that the simulation in this paper is accurate, with a maximum error not exceeding 5%. Furthermore, the radiator was further subjected to geometric parameter studies, principally including the height ratio between the fins and the channel, the fin angle, and the spacing between the fins. The thermal resistance, Nusselt number, friction factor, and heat-transfer enhancement factor were calculated. The results indicate that if the geometric parameters are selected appropriately, the heat sink will enhance heat-transfer performance within an acceptable pressure drop. When the Reynolds number is greater than 507.5, the height ratio of 25%, the rib angle of 135°, and the rib spacing of 2.5 mm can be given priority. This heat sink is used in PCR devices, and experimental results show that the novel channel heat sink can meet the heat dissipation requirements of the TEC during the PCR process.

Funder

National Natural Science Foundation of China

The Science and Technology Projects of Fujian Province, China

Natural Science Foundation of Fujian Province, China

Study on the Correlation between Vitamin A and E Levels and Respiratory Tract Infections in Children

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3