Unsteady MHD rear stagnation-point flow over off-centred deformable surfaces

Author:

Turkyilmazoglu Mustafa,Naganthran Kohilavani,Pop Ioan

Abstract

Purpose The purpose of this paper is to present both an analytical and a numerical analysis of the unsteady magnetohydrodynamic (MHD) rear stagnation-point flow over off-centred deformable surfaces. Design/methodology/approach The numerical MATLAB solver bvp4c suitable for routine boundary value problem is used for the set of ordinary differential equations reduced from the governing partial differential equations. Findings Multiple solutions are found for particular eigenvalues. The physical solution is computed by the help of a linear stability analysis. The authors have succeeded in discovering the second solutions, and it is suggested that these solutions are unstable and not physically realisable in practice. The current findings add to a growing body of literature on MHD stagnation-point flow problems. It is also found that the governing parameters have different effects on the flow characteristics. Practical implications Even though problems of steady MHD flows have been extensively studied for stagnation-point flows, limited findings can be found on the unsteady MHD rear stagnation-point flow over off-centred deformable surfaces. Originality/value The originality of this work is the application of a magnetic field on a time-dependent MHD rear stagnation-point flow over off-centred deformable surfaces.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3