External force estimation for robot manipulator based on a LuGre-linear-hybrid friction model and an improved square root cubature Kalman filter

Author:

Wang Jiacai,Chen Jiaoliao,Zhang Libin,Xu Fang,Zhi Lewei

Abstract

Purpose The sensorless external force estimation of robot manipulator can be helpful for reducing the cost and complexity of the robot system. However, the complex friction phenomenon of the robot joint and uncertainty of robot model and signal noise significantly decrease the estimation accuracy. This study aims to investigate the friction modeling and the noise rejection of the external force estimation. Design/methodology/approach A LuGre-linear-hybrid (LuGre-L) friction model that combines the dynamic friction characteristics of the robot joint and static friction of the drive motor is proposed to improve the modeling accuracy of robot friction. The square root cubature Kalman filter (SCKF) is improved by integrating a Sage Window outer layer and a nonlinear disturbance observer (NDOB) inner layer. In the outer layer, Sage Window is integrated in the square root Kalman filter (W-SCKF) to dynamically adjust noise statistics. NDOB is applied as the inner layer of W-SCKF (NDOB-WSCKF) to obtain the uncertain state variables of the state model. Findings A peg-in-hole contact experiment conducted on a real robot demonstrates that the average accuracy of the estimated joint torque based on LuGre-L is improved by 4.9% in contrast to the LuGre model. Based on the proposed NDOB-WSCKF, the average estimation accuracy of the external joint torque can reach up to 92.1%, which is improved by 4%–15.3% in contrast to other estimation methods (SCKF and NDOB). Originality/value A LuGre-L friction model is proposed to handle the coupling of static and dynamic friction characteristics for the robot manipulator. An improved SCKF is applied to estimate the external force of the robot manipulator. To improve the noise rejection ability of the estimation method and make it more resistant to unmodeled state variable, SCKF is improved by integrating a Sage Window and NDOB, and a NDOB-WSCKF external force estimator is developed. Validation results demonstrate that the accuracy of the robot dynamics model and the estimated external force is improved by the proposed method.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Contact Force Estimation Using Uncertain Torque Model and Friction Models for Robot Manipulator;IEEE Transactions on Industrial Electronics;2024-10

2. Harmonic drive friction loss based on an integrated joint for collaborative robots;International Journal of Modeling, Simulation, and Scientific Computing;2024-08-08

3. Joint torque prediction of industrial robots based on PSO-LSTM deep learning;Industrial Robot: the international journal of robotics research and application;2024-01-12

4. Compensation Modulation for Tracking Accuracy in Free Motion and Compliance During Interaction;IEEE/ASME Transactions on Mechatronics;2024

5. Sensorless Ground Reaction Force Observation With Disturbance Compensation in Heavy-Legged Robots;IEEE/ASME Transactions on Mechatronics;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3