Workspace calculating and kinematic modelling of a flexible continuum manipulator constructed by steel-wires

Author:

Gao GuoHua,Liu Yue,Wang Hao,Song MingYang,Ren Han

Abstract

Purpose – The purpose of this paper is to present a new method to establish a kinematic model for a continuum manipulator, whose end can be controlled to move in a three-dimensional workspace. A continuum manipulator has significant advantages over traditional, rigid manipulators in many applications because of its ability to conform to the environment. Moreover, because of its excellent flexibility, light weight, low energy consumption, low production cost, it has a number of potential applications in areas of earthquake relief, agricultural harvesting, medical facilities and space exploration. Design/methodology/approach – This paper uses basic theory of material mechanics to deduct motion equations of the manipulator. Unlike other published papers, the manipulator is not based on segments tactics, but regarded as an integrated flexible system, which simplifies its kinematics modelling and motion controlling. The workspace of the manipulator is analysed by theoretical deducing and simulation modelling. For verification of the presented theory, simulation based on ADAMS software was implemented, while a prototype of the manipulator was developed. Both the software simulation and prototype experiment show that the theoretical analysis in this paper is reasonable. The manipulator can move accurately along the desired trajectories. Findings – This paper developed a novel and fully continuous manipulator driven by steel wires. A kinematic model of the manipulator was established. The physical manipulator developed for verifying the kinematic model can effectively track the prescribed trajectory. The presented kinematic model agrees with not only the simulation but also with the experiment. Research limitations/implications – The manipulator presented in this paper is constructed by steel wires. It possesses the advantages of structural continuity, high flexibility and low production cost. It can be extensively used in many fields, such as search and rescue robotic systems. The limitation of this research is that the dynamic model of the manipulator is not yet clear, which is one of the directions for future research. Practical implications – The manipulator breaks through the limitation of the joint-type or flexible-link-type manipulator, which can also be extensively used in many fields such as search and rescue robotic systems. Social implications – The manipulator developed in this paper, currently, is a prototype under the project of “Automatic Picking Manipulator Research”. It possesses a good market value. Originality/value – The value of this research is that the manipulator breaks through the limitation of the joint-type or flexible-link-type manipulator and establishes the kinematic model for a fully continuous manipulator by a simple strategy. This is the first study that uses such a strategy for establishing the motion equations of a monolithic continuum manipulator.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of the Opening and Closing Manipulator for Portable High Voltage Ring Main Unit;2023 International Conference on Power Energy Systems and Applications (ICoPESA);2023-02-24

2. Dynamics modeling of a 2-DoFs cable-driven continuum robot;World Journal of Engineering;2022-02-10

3. Statics analysis of an extensible continuum manipulator with large deflection;Mechanism and Machine Theory;2019-11

4. Accuracy estimation of a stretch-retractable single section continuum manipulator based on inverse kinematics;Industrial Robot: the international journal of robotics research and application;2019-08-19

5. Development of continuum manipulator actuated by thin McKibben pneumatic artificial muscle;Mechatronics;2019-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3