Work engagement of online car-hailing drivers: the effects of platforms' algorithmic management

Author:

Li WeimoORCID,Lu Yaobin,Hu Peng,Gupta SumeetORCID

Abstract

PurposeAlgorithms are widely used to manage various activities in the gig economy. Online car-hailing platforms, such as Uber and Lyft, are exemplary embodiments of such algorithmic management, where drivers are managed by algorithms for task allocation, work monitoring and performance evaluation. Despite employing substantially, the platforms face the challenge of maintaining and fostering drivers' work engagement. Thus, this study aims to examine how the algorithmic management of online car-hailing platforms affects drivers' work engagement.Design/methodology/approachDrawing on the transactional theory of stress, the authors examined the effects of algorithmic monitoring and fairness on online car-hailing drivers' work engagement and revealed the mediation effects of challenge-hindrance appraisals. Based on survey data collected from 364 drivers, the authors' hypotheses were examined using partial least squares structural equation modeling (PLS-SEM). The authors also applied path comparison analyses to further compare the effects of algorithmic monitoring and fairness on the two types of appraisals.FindingsThis study finds that online car-hailing drivers' challenge-hindrance appraisals mediate the relationship between algorithmic management characteristics and work engagement. Algorithmic monitoring positively affects both challenge and hindrance appraisals in online car-hailing drivers. However, algorithmic fairness promotes challenge appraisal and reduces hindrance appraisal. Consequently, challenge and hindrance appraisals lead to higher and lower work engagement, respectively. Further, the additional path comparison analysis showed that the hindering effect of algorithmic monitoring exceeds its challenging effect, and the challenge-promoting effect of algorithmic fairness is greater than the algorithm's hindrance-reducing effect.Originality/valueThis paper reveals the underlying mechanisms concerning how algorithmic monitoring and fairness affect online car-hailing drivers' work engagement and fills the gap in the research on algorithmic management in the context of online car-hailing platforms. The authors' findings also provide practical guidance for online car-hailing platforms on how to improve the platforms' algorithmic management systems.

Publisher

Emerald

Subject

Library and Information Sciences,Computer Science Applications,Information Systems

Reference110 articles.

1. Workplace spirituality, well-being at work and employee loyalty in a gig economy: multi-group analysis across temporary vs permanent employment status;Personnel Review,2021

2. Electronic monitoring at work: the role of attitudes, functions, and perceived control for the acceptance of tracking technologies;Human Resource Management Journal,2019

3. On the evaluation of structural equation models;Journal of the Academy of Marketing Science,1988

4. Workplace surveillance: an overview;Labor History,2010

5. Productivity of gig workers on crowdsourcing platforms through artificial intelligence and gamification: a multi-theoretical approach;TQM Journal,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3