Author:
Milani Shirvan Kamel,Mirzakhanlari Soroush,Öztop Hakan F.,Mamourian Mojtaba,Al-Salem Khaled
Abstract
Purpose
The main purpose of this paper is to define 2D numerical study and a sensitivity analysis of natural convection heat transfer and entropy generation of Al2O3-water nanofluid in a trapezoidal cavity, with considering of the presence of a constant axial magnetic field.
Design/methodology/approach
The effects of the three effective parameters, the Rayleigh number, Hartmann number (Ha) and also inclination angle on the heat transfer performance and entropy generation, are investigated using a finite volume approach. The sensitivity analysis of the effective parameters is done utilizing the response surface methodology.
Findings
The results obtained showed that the mean Nusselt number and total entropy generation increase with the Rayleigh number. Also, increasing the inclination angle reduces the mean Nusselt number (regardless of the magnetic field). In addition, it is found that the mean Nusselt number increases until Ha = 10 and then decreases by increasing of Ha number, regardless of the inclination angle. The sensitivity of the mean Nusselt number to the Ha number and inclination angle α is negative. It is concluded that to maximize the mean Nusselt number and minimize the entropy generation, simultaneously, the Ha and inclination angle must be 50° and 0°, respectively.
Originality/value
There is no published research in the literature about sensitivity analysis of magneto-hydrodynamic heat transfer and entropy generation in inclined trapezoidal cavity filled with nanofluid.
Subject
Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献