Integrating multi-criteria decision making and clustering for business customer segmentation

Author:

Güçdemir Hülya,Selim Hasan

Abstract

Purpose – The purpose of this paper is to develop a systematic approach for business customer segmentation. Design/methodology/approach – This study proposes an approach for business customer segmentation that integrates clustering and multi-criteria decision making (MCDM). First, proper segmentation variables are identified and then customers are grouped by using hierarchical and partitional clustering algorithms. The approach extended the recency-frequency-monetary (RFM) model by proposing five novel segmentation variables for business markets. To confirm the viability of the proposed approach, a real-world application is presented. Three agglomerative hierarchical clustering algorithms namely “Ward’s method,” “single linkage” and “complete linkage,” and a partitional clustering algorithm, “k-means,” are used in segmentation. In the implementation, fuzzy analytic hierarchy process is employed to determine the importance of the segments. Findings – Business customers of an international original equipment manufacturer (OEM) are segmented in the application. In this regard, 317 business customers of the OEM are segmented as “best,” “valuable,” “average,” “potential valuable” and “potential invaluable” according to the cluster ranks obtained in this study. The results of the application reveal that the proposed approach can effectively be used in practice for business customer segmentation. Research limitations/implications – The success of the proposed approach relies on the availability and quality of customers’ data. Therefore, design of an extensive customer database management system is the foundation for any successful customer relationship management (CRM) solution offered by the proposed approach. Such a database management system may entail a noteworthy level of investment. Practical implications – The results of the application reveal that the proposed approach can effectively be used in practice for business customer segmentation. By making customer segmentation decisions, the proposed approach can provides firms a basis for the development of effective loyalty programs and design of customized strategies for their customers. Social implications – The proposed segmentation approach may contribute firms to gaining sustainable competitive advantage in the market by increasing the effectiveness of CRM strategies. Originality/value – This study proposes an integrated approach for business customer segmentation. The proposed approach differentiates itself from its counterparts by combining MCDM and clustering in business customer segmentation. In addition, it extends the traditional RFM model by including five novel segmentation variables for business markets.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications,Industrial relations,Management Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3