Abstract
Purpose
The purpose of this paper is to propose a novel target automatic recognition method for unmanned aerial vehicle (UAV), which is based on backpropagation – artificial neural network (BP-ANN) algorithm, with the objective of optimizing the structure of backpropagation network, to increase the efficiency and decrease the recognition time. A hardware-in-the-loop system for UAV target automatic recognition is also developed.
Design/methodology/approach
The hybrid model of BP-ANN structure is established for aircraft automatic target recognition. This proposed method identifies controller parameters and reduces the computational complexity. Approaching speed of the network is faster and recognition accuracy is higher. This kind of network combines or better fuses the advantages of backpropagation artificial neural algorithm and Hu moment. with advantages of two networks and improves the speed and accuracy of identification. Finally, a hardware-in-the-loop system for UAV target automatic recognition is also developed.
Findings
The double hidden level backpropagation artificial neural can easily increase the speed of recognition process and get a good performance for recognition accuracy.
Research limitations/implications
The proposed backpropagation artificial neural algorithm can be ANN easily applied to practice and can help the design of the aircraft automatic target recognition system. The standard backpropagation algorithm has some obvious drawbacks, namely, converging slowly and falling into the local minimum point easily. In this paper, an improved algorithm based on the standard backpropagation algorithm is constructed to make the aircraft target recognition more practicable.
Originality/value
A double hidden levels backpropagation artificial neural algorithm is presented for automatic target recognition system of UAV.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献