Electrodeposition of Ni-W and Ni-W-P films using a pulse current technique and their application for hydrogen evolution in an acidic solution

Author:

Abdel Hamid Zeinab,Hassan H.B.,Sultan Mohamed

Abstract

Purpose The improvement of the hydrogen evolution reaction (HER) performance requires more efficient and inexpensive electrocatalysts. The purpose of this study is to prepare Ni-W and Ni-W-P thin films using the electrodeposition technique using a pulse current and investigate their behaviors toward HER in an acidic solution. Design/methodology/approach The aim is to prepare Ni-W and Ni-W-P films by the electrodeposition technique using a pulse current and estimate their performance for the HER. The surface morphologies and chemical compositions of the deposited films were assessed using scanning electron microscopy, energy-dispersive X-ray analysis and X-ray diffraction. Linear sweep voltammetry, chronoamperometry, Tafel plots and electrochemical impedance spectroscopy were used to evaluate the prepared electrodes toward the hydrogen evolution process. Findings The main conclusion is that the surface morphology of Ni–W deposited film is a crystalline structure, while that of Ni-W-P deposit is an amorphous structure. HER activity on Ni-W electrodes increases with decreasing the Wt.% of W to 7.83 Wt.% in the prepared electrodes. In addition, the presence of P enhances HER activity, which increases with increasing the Wt.% of P in the prepared Ni-W-P electrodes. Both Ni-W (7.83 Wt.% W) and Ni-W-P (20.34 Wt.% P), which have been prepared at 8 A dm−2 display the best performance toward HER compared to the other prepared electrodes. They exhibit high catalytic activities toward HER, which is evidenced by high hydrogen evolution current density values of 9.52 and 33.98 mA cm−2, low onset potentials of −0.73 and −0.63 V, low Tafel slopes of −125 mV/dec, high exchange current densities of 0.058 and 0.20 mA cm−2, low charge transfer resistances (Rct) of 226.28 and 75.8 ohm·cm2 for Ni-W (7.83  Wt.% W) and Ni-W-P (20.34  Wt.% P), respectively; moreover, they exhibited considerable stabilities too. Originality/value The results presented in this work are an insight into understanding the performance of the prepared Cu electrodes coated by Ni-W and Ni-W-P films toward HER. In this work, a consistent assessment of the results achieved on laboratory scale has been conducted.

Publisher

Emerald

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3