Multi-objective optimization design of anti-rolling torsion bar based on modified NSGA-III algorithm

Author:

Li Yong-HuaORCID,Sheng Ziqiang,Zhi Pengpeng,Li Dongming

Abstract

Purpose How to get a lighter and stronger anti-rolling torsion bar has become a barrier for the development of high-speed railway vehicles. The purpose of this paper is to realize the multi-objective optimization of an anti-rolling torsion bar with a Modified Non-dominated Sorting Genetic Algorithm III (MNSGA-III), which aims to obtain a better design scheme of an anti-rolling torsion bar device. Design/methodology/approach First, the Non-dominated Sorting Genetic Algorithm III (NSGA-III) uses a simulated binary crossover (SBX) operator and a polynomial mutation operator, while the MNSGA-III algorithm proposed in this paper introduces an arithmetic crossover and an adaptive mutation operator to change the crossover and mutate operator in NSGA-III. Second, two algorithms are tested by ZDT3, ZDT4 functions. Both algorithms set the same population size and evolutionary generation, and then compare the results of NSGA-III and MNSGA-III. Finally, MNSGA-III is applied to the multi-objective model of an anti-rolling torsion bar which is established by taking the mass and stiffness of the torsion bar as the optimization object. After that, it obtains the Pareto solution set by solving the multi-objective model with MNSGA-III. The only optimal solution selected from the Pareto solution set is compared with the traditional design scheme of an anti-rolling torsion bar. Findings The MNSGA-III converges faster than NSGA-III. Besides, MNSGA-III has better diversity of Pareto solutions than NSGA-III and is closer to the ideal Pareto frontier. Comparing with the results before the optimization, it shows that the volume of the anti-rolling torsion bar reduces by 1.6 percent and the stiffness increases by 3.3 percent. The optimized data verifies the effectiveness of this method proposed in this paper. Originality/value The simulated binary crossover operator and polynomial mutation operator of NSGA-III are changed into an arithmetic crossover operator and an adaptive mutation operator, respectively, which improves the optimization performance of the algorithm.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3