Abstract
PurposeMechanical products usually require deterministic finite element analysis in the design phase to determine whether their structures meet the requirements. However, deterministic design ignores the influence of uncertainties in the design and manufacturing process of mechanical products, leading to the problem of a lack of design safety or excessive redundancy in the design. In order to improve the accuracy and rationality of the design results, a robust design method for structural reliability based on an active-learning marine predator algorithm (MPA)–backpropagation (BP) neural network is proposed.Design/methodology/approachThe MPA was used to obtain the optimal weights and thresholds of a BP neural network, and an active-learning function applicable to neural networks was proposed to efficiently improve the prediction performance of the BP neural network. On this basis, a robust optimization design method for mechanical product reliability based on the active-learning MPA-BP model was proposed. Random moving quadrilateral sampling was used to obtain the sample points required for training and testing of the neural network, and the reliability sensitivity corresponding to each sample point was calculated by subset simulated significant sampling (SSIS). The total mass of the mechanical product and the structural reliability sensitivity of the trained active-learning MPA-BP model output were taken as the optimization objectives, and a multi-objective reliability-robust optimization design model was constructed, which was solved by the second-generation non-dominated ranking genetic algorithm (NSGA-II). Then, the dominance function was used in the obtained Pareto solution set to make a dominance-seeking decision to obtain the final reliability-robust optimization design solution. The feasibility of the proposed method was verified by a reliability-robust optimization design example of the bogie frame.FindingsThe prediction error of the active-learning MPA-BP neural network was smaller than those of the particle swarm optimization (PSO)-BP, marine predator algorithm (MPA)-BP and genetic algorithm (GA)-BP neural networks under the same basic parameter settings of the algorithm, which indicated that the improvement strategy proposed in this paper improved the prediction accuracy of the BP neural network. To ensure the reliability of the bogie frame, the reliability sensitivity and total mass of the bogie frame were reduced, which not only realized the lightweight design of the bogie frame, but also improved the reliability and robustness of the bogie.Originality/valueThe MPA algorithm with a higher optimization efficiency was introduced to find the weights and thresholds of the BP neural network. A new active-learning function was proposed to improve the prediction accuracy of the MPA-BP neural network.
Subject
Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献