Author:
Abderrahmane Belkallouche,Rezoug Tahar,Dala Laurent
Abstract
PurposeAircraft noise is dominant for residents near airports when planes fly at low altitudes such as during departure and landing. Flaps, wings, landing gear contribute significantly to the total sound emission. This paper aims to present a passive flow control (in the sense that there is no power input) to reduce the noise radiation induced by the flow over the cavity of the landing gear during take-off and landing.Design/methodology/approachThe understanding of the noise source mechanism is normally caused by the unsteady interactions between the cavity surface and the turbulent flows as well as some studies that have shown tonal noise because of cavity resonances; this tonal noise is dependent on cavity geometry and incoming flow that lead us to use of a sinusoidal surface modification application upstream of a cavity as a passive acoustics control device in approach conditions.FindingsIt is demonstrated that the proposed surface waviness showed a potential reduction in cavity resonance and in the overall sound pressure level at the majority of the points investigated in the low Mach number. Furthermore, optimum sinusoidal amplitude and frequency were determined by the means of a two-dimensional computational fluid dynamics analysis for a cavity with a length to depth ratio of four.Research limitations/implicationsThe noise control by surface waviness has not implemented in real flight test yet, as all the tests are conducted in the credible numerical simulation.Practical implicationsThe application of passive control method on the cavity requires a global aerodynamic study of the air frame is a matter of ongoing debate between aerodynamicists and acousticians. The latter is aimed at the reduction of the noise, whereas the former fears a corruption of flow conditions. To balance aerodynamic performance and acoustics, the use of the surface waviness in cavity leading edge is the most optimal solution.Social implicationsThe proposed leading-edge modification it has important theoretical basis and reference value for engineering application it can meet the demands of engineering practice. Particularly, to contribute to the reduce the aircraft noise adopted by the “European Visions 2020”.Originality/valueThe investigate cavity noise with and without surface waviness generation and propagation by using a hybrid approach, the computation of flow based on the large-eddy simulation method, is decoupled from the computation of sound, which can be performed during a post-processing based on Curle’s acoustic analogy as implemented in OpenFOAM.
Reference29 articles.
1. Effects of cavity dimensions, boundary layer, and temperature on cavity noise with emphasis on benchmark data to validate computational aeroacoustic codes,1995
2. A second-order projection method for the incompressible Navier-Stokes equations;Journal of Computational Physics,1989
3. Estimation of possible excitation frequencies for shallow rectangular cavities;AIAA,1973
4. Computational aeroacoustics: progress on nonlinear problems of sound generation;Progress in Aerospace Sciences,2004
5. The influence of solid boundaries upon aerodynamic sound;Proceedings of the Royal Society of London A,1955
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献