Parametric and V&V study in a fundamental CFD process: revisiting the lid-driven cavity flow

Author:

Ge Mingming,Zhang Xin-Lei,Brookshire Kaleb,Coutier-Delgosha Olivier

Abstract

Purpose The openings on aircraft structures can be modeled from an aerodynamical point of view as lid-driven cavities (LDC). This paper aims to show the primary verification and validation (V&V) process in computational fluid dynamics (CFD, and to investigate the influences of numerical settings on the efficiency and accuracy for solving the LDC problem. Design/methodology/approach To dig into the details of CFD approaches, this paper outlines the design, implementation, V&V and results of an efficient explicit algorithm. The parametric study is performed thoroughly focusing on various iteration methods, grid density discretization terms and Reynolds number effects. Findings This study parameterized the numerical implementation which provides empirical insights into how computational accuracy and efficiency are affected by changing numerical settings. At a low Reynolds number (not over 1,000), the time-derivative preconditioning is necessary, and k = 0.1 can be the optimal value to guarantee the efficiency, as well as the stability. A larger artificial viscosity (c = 1/16) would relieve the calculating oscillation issue but proportionally increase the discretization error. Furthermore, the iteration method and the mesh quality are two key factors that affect the convergence efficiency, thus need to be selected “wisely”. Practical implications The study shows how numerical implementation can enhance an accurate and efficient solution. This workflow can be used to determine the best parameter settings whenever CFD researchers applying this LDC problem as a complementary design tool for testing newly developed solvers. Originality/value The studied LDC problem is representative of CFD analysis in real aircraft structures. These numerical simulations provide a cost-effective and convenient tool to understand the parameter sensitivity, solution receptivity and physics of the CFD process.

Publisher

Emerald

Subject

Aerospace Engineering

Reference36 articles.

1. Revisiting the lid-driven cavity flow problem: review and new steady state benchmarking results using GPU accelerated code;Alexandria Engineering Journal,2017

2. Passive control of cavity acoustics via the use of surface waviness at subsonic flow;Aircraft Engineering and Aerospace Technology,2019

3. Accurate three-dimensional lid-driven cavity flow;Journal of Computational Physics,2005

4. Stream function-vorticity driven cavity solution using p finite elements;Computers & Fluids,1997

5. Benchmark spectral results on the lid-driven cavity flow;Computers & Fluids,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3