Author:
Singh Ravi Pratap,Kumar Narendra,Gupta Ashutosh Kumar,Painuly Madhusudan
Abstract
Purpose
The purpose of this paper is to investigate experimentally the effect of several input process factors, namely, feed rate, spindle speed, ultrasonic power and coolant pressure, on hole quality measures (penetration rate [PR] and chipping diameter [CD]) in rotary mode ultrasonic drilling of macor bioceramic material.
Design/methodology/approach
The main experiments were planned using the response surface methodology (RSM). Scanning electron microscopy was also used to examine and study the microstructure of machined samples. This study revealed the existence of dominant brittle fracture and little plastic flow that resulted in a material loss from the base work surface. Experiment findings have shown the dependability and adequacy of the proposed mathematical model.
Findings
The percentage of brittle mode deformation rises as the penetration depth of abrasives increases (at increasing levels of feed rate). This was due to the fact that at greater depths of indentation, material loss begins in the form of bigger chunks and develops inter-granular fractures. These stated causes have provided an additional advantage to increasing the CD over the machined rod of bioceramic. The desirability method was also used to optimize multi-response measured responses (PR and CD). The mathematical model created using the RSM method will be very useful in industrial revelation. Furthermore, the investigated answers’ particle swarm optimization (PSO) and teacher-learner-based optimization (TLBO) make the parametric analysis more relevant and productive for real-life industrial practices.
Originality/value
Macor bioceramic has been widely recognized as one of the most highly demanded innovative dental ceramics, receiving expanded industry approval because of its outstanding and superior characteristics. However, effective and efficient processing remains a problem. Among the available contemporary machining methods introduced for processing typical and advanced materials, rotary mode ultrasonic machining has been identified as one of the best suitable candidates for precise processing of macor bioceramics, as this process produces thermal damage-free profiles, as well as high accuracy and an increased material removal rate. The optimized combined setting obtained using PSO is feed rate = 0.16 mm/s, spindle speed = 4,500 rpm, ultrasonic power = 60% and coolant pressure = 280 kPa with the value of fitness function is 0.0508. The optimized combined setting obtained using TLBO is feed rate = 0.06 mm/s, spindle speed = 2,500 rpm, ultrasonic power = 60% and coolant pressure = 280 kPa with the value of fitness function is 0.1703.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering
Reference26 articles.
1. Experimental analysis on the influence and optimization of μ-RUM parameters in machining alumina bioceramic;Materials,2019
2. Research on design and FE simulations of novel ultrasonic circular saw blade (UCSB) cutting tools for rotary ultrasonic machining of nomex honeycomb composites,2019
3. A study on the effect of main process parameters of rotary ultrasonic machining for drilling BK7 glass;Advances in Mechanical Engineering,2018
4. Ultrasonic vibration assisted grinding of CFRP composites: effect of fiber orientation and vibration velocity on grinding forces and surface quality;International Journal of Lightweight Materials and Manufacture,2018
5. Rotary ultrasonic machining of rocks: an experimental investigation;Advances in Mechanical Engineering,2018
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献