An improved model on forecasting temperature rise of high-speed angular contact ball bearings considering structural constraints

Author:

Zheng De-xing,Chen Weifang,Li Miaomiao

Abstract

Purpose Thermal performances are key factors impacting the operation of angular contact ball bearings. Heat generation and transfer about angular contact ball bearings, however, have not been addressed thoroughly. So far, most researchers only considered the convection effect between bearing housings and air, whereas the cooling/lubrication operation parameters and configuration effect were not taken into account when analyzing the thermal behaviors of bearings. This paper aims to analyze the structural constraints of high-speed spindle, structural features of bearing, heat conduction and convection to study the heat generation and transfer of high-speed angular contact ball bearings. Design/methodology/approach Based on the generalized Ohm’s law, the thermal grid model of angular contact ball bearing of high-speed spindle was first established. Next Gauss–Seidel method was used to solve the equations group by Matlab, and the nodes temperature was calculated. Finally, the bearing temperature rise was tested, and the comparative analysis was made with the simulation results. Findings The results indicate that the simulation results of bearing temperature rise for the proposed model are in better agreement with the test values. So, the thermal grid model established is verified. Originality/value This paper shows an improved model on forecasting temperature rise of high-speed angular contact ball bearings. In modeling, the cooling/lubrication operation parameters and structural constraints are integrated. As a result, the bearing temperature variation can be forecasted more accurately, which may be beneficial to improve bearing operating accuracy and bearing service life.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference28 articles.

1. Heat transfer between concentric rotating cylinders;Trans. ASME,1959

2. Cage friction in high- speed spindle bearings;Tribology Transactions,2014

3. A thermal model for high speed motorized spindles;International Journal of Machine Tools and Manufacture,1999

4. Heat transfer from a rotating disk,1956

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling and dynamic characteristic analysis of high speed angular contact ball bearing with variable clearance;Tribology International;2023-04

2. An improved thermal performance modeling for high-speed spindle of machine tool based on thermal contact resistance analysis;The International Journal of Advanced Manufacturing Technology;2022-03-28

3. Thermal-mechanical fully coupled analysis of high-speed angular contact ball bearings;Journal of Mechanical Science and Technology;2021-01-28

4. Study on temperature rise distribution of contact surface under cyclic load;Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology;2020-04-16

5. Effect of vibration on power loss of angular contact ball bearings;Industrial Lubrication and Tribology;2019-12-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3