Author:
Rosa Benoit,Mognol Pascal,Hascoët Jean-Yves
Abstract
Purpose
Direct metal deposition (DMD) with laser is an additive manufacturing process enabling rapid manufacturing of complex metallic and thin parts. However, the final quality of DMD-manufactured surfaces is a real issue that would require a polishing operation. Polishing processes are usually based on abrasive or chemical techniques. These conventional processes are composed by many drawbacks such as accessibility of complex shapes, environmental impacts, high time consumption and cost, health risks for operators, etc. […] This paper aims to solve these problems and improve surface quality by investigating the laser polishing (LP) process.
Design/methodology/approach
Based on melting material by laser, the LP process enables the smoothing of initial topography. However, the DMD process and the LP processes are based on laser technology. In this context, the laser DMD process is used directly on the same machine for the polishing operation. Currently, few studies focus on LP of additive laser manufacturing surfaces, and it tends to limit the industrial use of additive manufacturing technology. The proposed study describes an experimental analysis of LP surfaces obtained by DMD process.
Findings
The investigation results in the improvement of a complete final surface quality, according to LP parameters. For mastering LP processes, operating parameters are modelled.
Originality/value
This experimental study introduces the LP of thin and complex DMD parts, to develop LP applications. The final objective is to create a LP methodology for optimizing the final topography and productivity time according to parts’ characteristics.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献