Modelling and optimization of laser polishing of additive laser manufacturing surfaces

Author:

Rosa Benoit,Mognol Pascal,Hascoët Jean-Yves

Abstract

Purpose Direct metal deposition (DMD) with laser is an additive manufacturing process enabling rapid manufacturing of complex metallic and thin parts. However, the final quality of DMD-manufactured surfaces is a real issue that would require a polishing operation. Polishing processes are usually based on abrasive or chemical techniques. These conventional processes are composed by many drawbacks such as accessibility of complex shapes, environmental impacts, high time consumption and cost, health risks for operators, etc. […] This paper aims to solve these problems and improve surface quality by investigating the laser polishing (LP) process. Design/methodology/approach Based on melting material by laser, the LP process enables the smoothing of initial topography. However, the DMD process and the LP processes are based on laser technology. In this context, the laser DMD process is used directly on the same machine for the polishing operation. Currently, few studies focus on LP of additive laser manufacturing surfaces, and it tends to limit the industrial use of additive manufacturing technology. The proposed study describes an experimental analysis of LP surfaces obtained by DMD process. Findings The investigation results in the improvement of a complete final surface quality, according to LP parameters. For mastering LP processes, operating parameters are modelled. Originality/value This experimental study introduces the LP of thin and complex DMD parts, to develop LP applications. The final objective is to create a LP methodology for optimizing the final topography and productivity time according to parts’ characteristics.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference20 articles.

1. Laser polishing of glass articles;Glass and Ceramics,1997

2. Durability and tribological performance of smooth diamond films produced by Ar-C60 microwave plasmas and by laser polishing;Surface and Coatings Technology,1997

3. A computational intelligence-based genetic programming approach for the simulation of soil water retention curves;Transport in Porous Media,2014

4. Comparison of regression analysis, artificial neural network and genetic programming in handling the multicollinearity problem,2012

5. Genetic programming for modeling vibratory finishing process: role of experimental designs and fitness functions;Swarm, Evolutionary, and Memetic Computing, Lecture Notes in Computer Science,2013

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3