UAV attitude estimation based on the dual filtering methods

Author:

Zhuang Zhemin,Guo Zhijie,Joseph Raj Alex Noel,Guo Canzhu

Abstract

Purpose A toy UAV performs tumbling, rolling, racing and other complex activities. It is based on low-cost hardware and hence requires a better algorithm to estimate the attitudes more accurately with low power consumption. The proposed technique based on optimized Madgwick filter and moving average filter (MAF) ensures improved convergence speed in estimating the attitude, achieves higher accuracy and provides robustness and stability of the toy UAV. The paper aims to discuss this issue. Design/methodology/approach Traditional methods are prone to problems such as slow convergence speed and errors in calculation of the attitude angles. These errors cause the vehicle to drift and tremble, thus affecting the overall stability of the vehicle. The proposed method combines the features of optimized Madgwick filter and MAF to provide better accuracy, achieved through the fusion of gyroscope and accelerometer data, and zero correction to eliminate the random drift error of the gyroscope and removal of high-frequency interference by MAF of the accelerometer data. The experimental results on actual flight data showed that the method was better than the conventional Madgwick and Mahony complementary filters. Findings The performance of the proposed method was analyzed by estimating the pitch and roll angles under the static and dynamic condition of the toy UAV. The results were compared with two traditional methods: Madgwick and Mahony complement filter. In the static condition, the variance and average error while estimating the attitudes was comparatively lower than the traditional method. For the dynamic conditions, the convergence time to achieve a prescribed swing angle was again lower than the traditional method. From these two experiments, it can be seen that the proposed method provides better attitude estimation at lower computation time. Originality/value The proposed method combines the optimized Madgwick filter and MAF to accuracy estimate the attitude of toy UAV. The algorithm mainly suits the toy UAVs which are based on low-cost hardware and require better control systems to ensure stability of the vehicle. The experimental results on real flight data illustrate that the method not only improves the convergence speed in estimating the attitude angle for large maneuvers of the toy UAV, but also achieves higher accuracy in the attitude estimation, thus ensuring the robustness and stability of the UAV.

Publisher

Emerald

Reference19 articles.

1. Accurate attitude estimation of a moving land vehicle using low-cost MEMS IMU sensors;IEEE Transactions on Intelligent Transportation Systems,2017

2. A survey on design and development of an unmanned aerial vehicle (quadcopter);International Journal of Intelligent Unmanned Systems,2016

3. The triangular quadrotor: a more efficient quadrotor configuration;IEEE Transactions on Robotics,2015

4. Design of MPCs for a fixed wing UAV;Aircraft Engineering and Aerospace Technology,2017

5. MEMS IMU and two-antenna GPS integration navigation system using interval adaptive Kalman filter;IEEE Aerospace and Electronic Systems Magazine,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3