An Adaptive Three-Axis Attitude Estimation Method Based on Multi-Sensor Fusion for Optoelectronic Platform

Author:

Kong YawenORCID,Tian DapengORCID,Wang YutangORCID

Abstract

Optoelectronic platform is an important payload in the field of aerospace and widely used in geographic mapping, measurement, and positioning. In order to obtain high-precision attitude measurement, gyro and accelerometer are applied in the feedback loop of light of sight (LOS) control system of optoelectronic platform. Aiming at compensating for gyro drift and maneuvering acceleration disturbance, an adaptive 3-axis attitude estimation method is proposed in this paper. An adaptive threshold criterion is designed by applying the accelerometer data in the sliding window. The threshold is determined in real time to judge whether the maneuvering acceleration exists. If it exists, the angular attitude error is compensated for by the gyro drift model. Otherwise, the angular attitude error is compensated by multi-sensor fusion. Furthermore, a phase-lag-free low pass filter (LPF) is applied to compensate for the phase lag error introduced in the above attitude estimation process. Compared with the angular attitude calculated by gyro, the root mean square error (RMSE) of the proposed method in roll, pitch, and yaw attitude decreased 44.23%, 49.91%, and 46.21%, respectively. In addition, the proposed method can estimate the attitude accurately without obvious phase lag when the maneuvering acceleration disturbance exists. The focus of this paper is to improve the performance of LOS motion control system of optoelectronic platform from the perspective of sensor signal processing. This method is suitable for aerospace applications with high-precision measurement and positioning requirements without maneuver interference, drift error and phase lag.

Funder

Key Research Program of Frontier Sciences, CAS

National Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3