Author:
Derdour Karima,Bouchelta Chafia,Khorief Naser-Eddine Amina,Medjram Mohamed Salah,Magri Pierre
Abstract
Purpose
The purpose of this paper is to focus on the removal of hexavalent chromium [Cr(VI)] from wastewater by using activated carbon-supported Fe catalysts derived from walnut shell prepared using a wetness impregnation process. The different conditions of preparation such as impregnation rate and calcination conditions (temperature and time) were optimized to determine their effects on the catalyst’s characteristics.
Design/methodology/approach
The catalyst samples were characterized using thermogravimetric analysis, scanning electron microscopy and Fourier transform infrared spectroscopy. The adsorption of Cr(VI) by using using activated carbon supported Fe catalysts derived from walnut shell as an adsorbent and catalyst was investigated under different adsorption conditions. The parameters studied were contact time, adsorbent dose, solution pH and initial concentrations.
Findings
Results showed that higher adsorption capacity and rapid kinetics were obtained when the activated walnut shell was impregnated with Fe at 5 per cent and calcined under N2 flow at 400°C for 2 h. The adsorption isotherms data were analyzed with Langmuir and Freundlich models. The better fit is obtained with the Langmuir model with a maximum adsorption capacity of 29.67 mg/g for Cr(VI) on Fe5-AWS at pH 2.0.
Originality/value
A comparison of two kinetic models shows that the adsorption isotherms system is better described by the pseudo-first-order kinetic model.
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献