Modeling and analysis of free vibrations in thermoelastic hollow spheres

Author:

Sharma Nivedita

Abstract

Purpose – The purpose of this paper is to present a model to analyze free vibrations in a transradially isotropic, thermoelastic hollow sphere subjected to stress free, thermally insulated or stress free, isothermal and rigidly fixed, thermally insulated or rigidly fixed, isothermal boundary conditions. Design/methodology/approach – The potential functions along with spherical wave solution have been used to reduce the system of governing partial differential equations to a coupled system of ordinary differential equations in radial coordinates after employing non-dimensional quantities. Matrix Frobenius method of extended power series has been employed to obtain accurate solution of coupled differential equations in terms of radial coordinates. The mathematical model of the considered problem has been solved analytically to obtain the characteristics equations after imposing the appropriate boundary conditions at the outer and inner surfaces of the hollow sphere. The characteristic equations which govern various types of vibration modes expected to exist have been derived in the compact form. The special cases of spheroidal and toroidal modes of vibrations have been deduced from the characteristic equations and discussed. Findings – The toroidal mode has been found to be independent of temperature change. The magnitude of lowest frequency and damping factor are significantly affected in the presence of thermal field and increase with an increase in the spherical harmonics in addition to geometry of the structure. Originality/value – The matrix Frobenius method has been used to develop analytical solutions and functional iteration technique to carry out numerical simulations of such structures for the first time. The simulated results are presented graphically and compared with the available literature.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3