Simulation of coupled elasticity problem with pressure equation: hydroelastic equation

Author:

Hooshyarfarzin BaharakORCID,Abbaszadeh MostafaORCID,Dehghan Mehdi

Abstract

PurposeThe main aim of the current paper is to find a numerical plan for hydraulic fracturing problem with application in extracting natural gases and oil.Design/methodology/approach First, time discretization is accomplished via Crank-Nicolson and semi-implicit techniques. At the second step, a high-order finite element method using quadratic triangular elements is proposed to derive the spatial discretization. The efficiency and time consuming of both obtained schemes will be investigated. In addition to the popular uniform mesh refinement strategy, an adaptive mesh refinement strategy will be employed to reduce computational costs.FindingsNumerical results show a good agreement between the two schemes as well as the efficiency of the employed techniques to capture acceptable patterns of the model. In central single-crack mode, the experimental results demonstrate that maximal values of displacements in x- and y- directions are 0.1 and 0.08, respectively. They occur around both ends of the line and sides directly next to the line where pressure takes impact. Moreover, the pressure of injected fluid almost gained its initial value, i.e. 3,000 inside and close to the notch. Further, the results for non-central single-crack mode and bifurcated crack mode are depicted. In central single-crack mode and square computational area with a uniform mesh, computational times corresponding to the numerical schemes based on the high order finite element method for spatial discretization and Crank-Nicolson as well as semi-implicit techniques for temporal discretizations are 207.19s and 97.47s, respectively, with 2,048 elements, final time T = 0.2 and time step size τ = 0.01. Also, the simulations effectively illustrate a further decrease in computational time when the method is equipped with an adaptive mesh refinement strategy. The computational cost is reduced to 4.23s when the governed model is solved with the numerical scheme based on the adaptive high order finite element method and semi-implicit technique for spatial and temporal discretizations, respectively. Similarly, in other samples, the reduction of computational cost has been shown.Originality/valueThis is the first time that the high-order finite element method is employed to solve the model investigated in the current paper.

Publisher

Emerald

Reference73 articles.

1. A meshless numerical investigation based on the RBF-QR approach for elasticity problems;AUT Journal of Mathematics and Computing,2020

2. Numerical investigation of the effect of aeration and hydroelasticity on impact loading and structural response for elastic plates during water entry;Ocean Engineering,2020

3. Matlab implementation of the finite element method in elasticity;Computing,2002

4. Phase-field modeling of brittle fracture using an efficient virtual element scheme;Computer Methods in Applied Mechanics and Engineering,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3