Author:
Brusco Michael J.,Singh Renu,Cradit J. Dennis,Steinley Douglas
Abstract
Purpose
The purpose of this paper is twofold. First, the authors provide a survey of operations management (OM) research applications of traditional hierarchical and nonhierarchical clustering methods with respect to key decisions that are central to a valid analysis. Second, the authors offer recommendations for practice with respect to these decisions.
Design/methodology/approach
A coding study was conducted for 97 cluster analyses reported in six OM journals during the period spanning 1994-2015. Data were collected with respect to: variable selection, variable standardization, method, selection of the number of clusters, consistency/stability of the clustering solution, and profiling of the clusters based on exogenous variables. Recommended practices for validation of clustering solutions are provided within the context of this framework.
Findings
There is considerable variability across clustering applications with respect to the components of validation, as well as a mix of productive and undesirable practices. This justifies the importance of the authors’ provision of a schema for conducting a cluster analysis.
Research limitations/implications
Certain aspects of the coding study required some degree of subjectivity with respect to interpretation or classification. However, in light of the sheer magnitude of the coding study (97 articles), the authors are confident that an accurate picture of empirical OM clustering applications has been presented.
Practical implications
The paper provides a critique and synthesis of the practice of cluster analysis in OM research. The coding study provides a thorough foundation for how the key decisions of a cluster analysis have been previously handled in the literature. Both researchers and practitioners are provided with guidelines for performing a valid cluster analysis.
Originality/value
To the best of the authors’ knowledge, no study of this type has been reported in the OM literature. The authors’ recommendations for cluster validation draw from recent studies in other disciplines that are apt to be unfamiliar to many OM researchers.
Subject
Management of Technology and Innovation,Strategy and Management,General Decision Sciences
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献