Cluster analysis in empirical OM research: survey and recommendations

Author:

Brusco Michael J.,Singh Renu,Cradit J. Dennis,Steinley Douglas

Abstract

Purpose The purpose of this paper is twofold. First, the authors provide a survey of operations management (OM) research applications of traditional hierarchical and nonhierarchical clustering methods with respect to key decisions that are central to a valid analysis. Second, the authors offer recommendations for practice with respect to these decisions. Design/methodology/approach A coding study was conducted for 97 cluster analyses reported in six OM journals during the period spanning 1994-2015. Data were collected with respect to: variable selection, variable standardization, method, selection of the number of clusters, consistency/stability of the clustering solution, and profiling of the clusters based on exogenous variables. Recommended practices for validation of clustering solutions are provided within the context of this framework. Findings There is considerable variability across clustering applications with respect to the components of validation, as well as a mix of productive and undesirable practices. This justifies the importance of the authors’ provision of a schema for conducting a cluster analysis. Research limitations/implications Certain aspects of the coding study required some degree of subjectivity with respect to interpretation or classification. However, in light of the sheer magnitude of the coding study (97 articles), the authors are confident that an accurate picture of empirical OM clustering applications has been presented. Practical implications The paper provides a critique and synthesis of the practice of cluster analysis in OM research. The coding study provides a thorough foundation for how the key decisions of a cluster analysis have been previously handled in the literature. Both researchers and practitioners are provided with guidelines for performing a valid cluster analysis. Originality/value To the best of the authors’ knowledge, no study of this type has been reported in the OM literature. The authors’ recommendations for cluster validation draw from recent studies in other disciplines that are apt to be unfamiliar to many OM researchers.

Publisher

Emerald

Subject

Management of Technology and Innovation,Strategy and Management,General Decision Sciences

Reference136 articles.

1. Effect of information feedback on bidder behavior in continuous combinatorial auctions;Management Science,2012

2. Refining the product-process matrix;International Journal of Operations & Production Management,2002

3. Effective strategies for internal outsourcing and offshoring of business services: an empirical investigation;Journal of Operations Management,2008

4. Data-based metrics for cluster analysis;Utilitas Mathematica,1982

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3