Author:
Aggarwal Satakshi,Jain Tanu
Abstract
Purpose
Modern thermal and non-thermal pretreatment techniques, namely, enzymatic treatment, gas phase plasma treatment and ohmic heating have become more pronounced over conventional techniques for enhanced coloured phytochemicals (pigments) extraction. Presently, numbers of pretreatment techniques are available with some unique feature. It is difficult to choose best pretreatment method to be employed for phytochemicals extraction from different sources. Therefore, this paper aims to discuss different modern pretreatment techniques for extraction with their potential results over conventional techniques.
Design/methodology/approach
Research and review articles targeting to the thermal and non-thermal pretreatment techniques were collected from Google Scholar. The required information has been tabulated and discussed which included qualities of modern pretreatment techniques over conventional techniques, phytochemical extraction and best pretreatment methods for optimized results.
Findings
Every pre-treatment has its own advantages and disadvantages for a particular phytochemical and its extraction from various sources. Enzymes can be used in combinations to enhance final yield like extraction of carotenoids (pectinase, cellulase and hemicellulase) from chillies and lycopene (pectinase and cellulase) from tomato. Utilization of each method depends upon many factors such as source of pigment, cost and energy consumption. CO2 pretreatment gives good results for carotenoid extraction from algae sources. Ohmic heating can yield high anthocyanin content. Modifications in conventional blanching has reduced final waste and improvised the properties of pigment.
Originality/value
This study comprises collective information regarding modern pre-treatment for extraction over conventional pre-treatments. The study also covers future trends and certain new hybrid approaches which are still less flourished.
Subject
Nutrition and Dietetics,Food Science
Reference73 articles.
1. The use of direct resistance heating in the food industry;J Food Eng,1990
2. Mathematical model of an integrated blancher/cooler;J Food Eng,2003
3. Mathematical model of heat transfer and enzyme inactivation in an integrated blancher cooler;J Food Eng,2003
4. Effect of enzymes during vinification on colour and sensory properties of port wines;American Journal of Enology and Viticulture,1999
5. Natural food colors,1981
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献