Sensitivity and sensitivity isotropy of an 8/4–4 parallel six-axis force sensor

Author:

Li Chenggang,Song Weishan,Song Yong

Abstract

PurposeSix-axis force sensors play an important role in civilian and military fields because of their multifunctionality. In the context of sensor structure design, sensitivity and sensitivity isotropy are often considered. This paper aims to study the possible relationship between the sensitivity/sensitivity isotropy and structural parameters of an 8/4–4 parallel six-axis force sensor. A comprehensive evaluation index and structural optimization design scheme are suggested in the end.Design/methodology/approachBased on the conditional number of the Jacobian matrix spectral norm, the sensitivity and sensitivity isotropy of the sensor are derived. Orthogonal experiments are used to determine the degree of primary and secondary factors that have a substantial effect on the sensor characteristics. The relationship between the performance indices and the structural parameters is analyzed by the performance atlas method. The comprehensive evaluation index lays the foundation for the structural optimization design of an 8/4–4 parallel six-axis force sensor.FindingsThe variation in each performance index of the sensor for each of the structural parameters is analyzed, and the structural parameters of the sensor with the desired performance indices can be easily selected from the performance atlases. A comprehensive performance evaluation index with a target value of 1 is proposed, and the overall influence of the structural parameters on the sensor performance index is investigated. A simulation example shows the feasibility of the proposed evaluation index.Originality/valueThe importance of each structural parameter of the 8/4–4 parallel six-axis force sensor is determined through orthogonal experiments in this paper. Relations among the structural parameters meeting the performance indices are derived and shown in the performance atlases. A comprehensive evaluation index is proposed to analyze the overall sensor performance.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Reference31 articles.

1. Modeling and experimental study of a honeycomb beam filled with damping particles;Journal of Sound and Vibration,2017

2. Model based in situ calibration of six axis force torque sensors,2016

3. Design and calibration of a six-axis force/torque sensor with large measurement range used for the space manipulator,2015

4. Analysis of-sensitivity for six-axis force/torque sensor based on Stewart platform,2007

5. Beam type hexapod structure based six component force-torque sensor;Mechatronics,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3