Abstract
PurposeThe current study aims to predict consumer complaint status (complainers or non-complainers) based on socio-demographic and psychographic factors and further to discern the differences in behavior disposition of consumer groups concerning determinants of consumer's tendency to exit (TE).Design/methodology/approachThe research used survey-based data of 600 Indian consumers of three service sectors (hotel and hospitality, automobile service centers and organized retail stores). Chi-square automatic interaction detector (CHAID) decision tree analysis was used to profile consumers.FindingsThe results indicated that occupation; income; education; industry and attitude toward complaining were significant factors in profiling consumers as complainers or non-complainers. Further, determinants of TE (discouraging subjective norms, perceived likelihood of successful complaint, lower perceived switching cost, poor employee response, negative past experience and ease of complaint process) vary significantly across the groups of complainers and non-complainers.Research limitations/implicationsThe research questions in this study were tested with three service sectors consumers in India, so due care should be exercised in generalizing these findings to other sectors and countries. Study replication across other service sectors and countries is recommended to improve the generalizability of these findings with wider socio-demographic samples.Practical implicationsFirms striving for consumer retention and aim to extend their consumer life cycle can greatly benefit from the results of this study to understand the customer complaint behavior (CCB) specific to non-complaining (exit) behavior. The future researcher may benefit from replicating and extending the model in different industries for further contribution to the CCB literature.Originality/valueTo the best of the author's knowledge, there is no evidence of consumer segmentation based on their complaining behavior or socio-demographic and psychographic factors by employing CHAID decision tree analysis. In addition to illustrating the use of data mining techniques such as CHAID in the field of CCB, it also contributes to the extant literature by researching in a non-Western setting like India.
Subject
General Business, Management and Accounting
Reference61 articles.
1. What may lead you to recommend and revisit a hotel after a service failure instead of complaining?;International Journal of Contemporary Hospitality Management,2015
2. Benefit Segmentation: a potentially useful technique of segmenting and targeting older consumers;International Journal of Research in Marketing,2003
3. The theory of planned behavior;Organizational Behavior and Human Decision Processes,1991
4. Consumer complaining behavior: a paradigmatic review;Philosophy of Management,2021
5. The role of public and private complaining in satisfaction with problem resolution;Journal of Consumer Affairs,1985
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献