Analysis of makeup air in a natural smoke vent system in a tall space using numerical simulation and Schlieren technique

Author:

Shih ChiaYuan,Chen YaoHan,Su ChungHwei,Wang ShiuanCheng,Yang YungChang

Abstract

Purpose The purpose of this paper is to analyze the phenomenon of makeup effect using numerical simulation and model experiments on seven different natural smoke extraction patterns of tall space. Airflow distribution and heat accumulation phenomenon in different cases are compared. The natural smoke exhaust system for tall spaces has many advantages, including low cost, no power and low maintenance cost. It is more advantageous than the mechanical type of exhaust. However, the internal air distribution is complicated since the large span spatial character. Effective and correct verification method is very important for the analysis of flow fields in tall spaces. Design/methodology/approach This study used fire dynamics simulator (FDS) software to simulate the fire scene. The model experiments are conducted to determine if the numerical simulation results are reasonable. A single-mirror Schlieren system, including an 838 (H) × 736 mm (W) square concave mirror, as well as the focal length of 3,100 mm was adopted to record the dynamic flow of hot gas. Six smokeless candles were burned in a 1/12.5 model in experiments to record the distribution of inflow, accumulation and outflow of airflow in the space. In addition, the thermocouple lines were mounted in the model for temperature measurement. Findings The results of numerical simulation and model experiments have proved that makeup air has a significant effect on the effectiveness of a natural smoke vent system. Larger areas of smoke vents will produce more heat accumulation phenomenon. In this study, the air inlet and vent installed on the same side have a better heat removal effect. Moreover, Schlieren photography technique is proved to be an accurate measurement method to record the dynamic flow of hot air immediately, directly and accurately. The dynamic flow behavior of hot gas in the model has been visualized in this paper. Originality/value At present, there is no examination method other than checking the smoke vent area to validate the effectiveness of a natural smoke vent system in Taiwan, as well as no requirements regarding the makeup inlet. The effect of makeup air in generating the effective push-pull phenomenon of airflow has been analyzed. In addition, the post-combustion hot gas distributions were visualized by using Schlieren photography technology in the model space, compared with the FDS simulation result and thermocouple recorded temperature. A verification method in the model experiments is established to determine if the numerical simulation results are reasonable.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3