Thermo-Fluid Dynamics Analysis of Fire Smoke Dispersion and Control Strategy in Buildings

Author:

Gomez Ricardo S.ORCID,Porto Túlio R. N.,Magalhães Hortência L. F.ORCID,Santos Antonio C. Q.,Viana Victor H. V.,Gomes Kelly C.ORCID,Lima Antonio G. B.

Abstract

Smoke is the main threat of death in fires. For this reason, it becomes extremely important to understand the dispersion of this pollutant and to verify the influence of different control systems on its spread through buildings, in order to avoid or minimize its effects on living beings. Thus, this work aims to perform thermo-fluid dynamic study of smoke dispersion in a closed environment. All numerical analysis was performed using the Fire Dynamics Simulator (FDS) software. Different simulations were carried out to evaluate the influence of the exhaust system (natural or mechanical), the heat release rate (HRR), ventilation and the smoke curtain in the pollutant dispersion. Results of the smoke layer interface height, temperature profile, average exhaust volumetric flow rate, pressure and velocity distribution are presented and discussed. The results indicate that an increase in the natural exhaust area increases the smoke layer interface height, only for the well-ventilated compartment (open windows); an increase in the HRR accelerates the downward vertical displacement of the smoke layer and that the 3 m smoke curtain is efficient in exhausting smoke, only in the case of poorly ventilated compartments (i.e., with closed windows).

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3