Composite fuzzy-wavelet-based active contour for medical image segmentation

Author:

Mewada Hiren,Patel Amit V.,Chaudhari Jitendra,Mahant Keyur,Vala Alpesh

Abstract

Purpose In clinical analysis, medical image segmentation is an important step to study the anatomical structure. This helps to diagnose and classify abnormality in the image. The wide variations in the image modality and limitations in the acquisition process of instruments make this segmentation challenging. This paper aims to propose a semi-automatic model to tackle these challenges and to segment medical images. Design/methodology/approach The authors propose Legendre polynomial-based active contour to segment region of interest (ROI) from the noisy, low-resolution and inhomogeneous medical images using the soft computing and multi-resolution framework. In the first phase, initial segmentation (i.e. prior clustering) is obtained from low-resolution medical images using fuzzy C-mean (FCM) clustering and noise is suppressed using wavelet energy-based multi-resolution approach. In the second phase, resultant segmentation is obtained using the Legendre polynomial-based level set approach. Findings The proposed model is tested on different medical images such as x-ray images for brain tumor identification, magnetic resonance imaging (MRI), spine images, blood cells and blood vessels. The rigorous analysis of the model is carried out by calculating the improvement against noise, required processing time and accuracy of the segmentation. The comparative analysis concludes that the proposed model withstands the noise and succeeds to segment any type of medical modality achieving an average accuracy of 99.57%. Originality/value The proposed design is an improvement to the Legendre level set (L2S) model. The integration of FCM and wavelet transform in L2S makes model insensitive to noise and intensity inhomogeneity and hence it succeeds to segment ROI from a wide variety of medical images even for the images where L2S failed to segment them.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference41 articles.

1. Medical image analysis with fuzzy models;Statistical Methods in Medical Research,1997

2. Active contours without edges;IEEE Transactions on Image Processing,2001

3. An unsupervised learning model for medical image segmentation,2020

4. Learning active contour models for medical image segmentation,2019

5. Automatic glioma characterization from dynamic susceptibility contrast imaging: brain tumor segmentation using knowledge-based fuzzy clustering;Journal of Magnetic Resonance Imaging,2009

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3