Abstract
PurposeThe purpose of this study is to propose a new method for the end-to-end classification of steel surface defects.Design/methodology/approachThis study proposes an AM-AoN-SNN algorithm, which combines an attention mechanism (AM) with an All-optical Neuron-based spiking neural network (AoN-SNN). The AM enhances network learning and extracts defective features, while the AoN-SNN predicts both the labels of the defects and the final labels of the images. Compared to the conventional Leaky-Integrated and Fire SNN, the AoN-SNN has improved the activation of neurons.FindingsThe experimental findings on Northeast University (NEU)-CLS demonstrate that the proposed neural network detection approach outperforms other methods. Furthermore, the network’s effectiveness was tested, and the results indicate that the proposed method can achieve high detection accuracy and strong anti-interference capabilities while maintaining a basic structure.Originality/valueThis study introduces a novel approach to classifying steel surface defects using a combination of a shallow AoN-SNN and a hybrid AM with different network architectures. The proposed method is the first study of SNN networks applied to this task.
Reference48 articles.
1. Surface defects classification of hot-rolled steel strips using multi-directional shearlet features;Arabian Journal for Science and Engineering,2018
2. Strip defect classification based on improved genera-tive adversarial networks and MobileNetV3;Laser and Optoelectronics Progress,2021
3. Temporal Coding in Spiking Neural Networks With Alpha Synaptic Function: Learning With Backpropagation,2019
4. Model selection for direct marketing: performance criteria and validation methods;Marketing Intelligence and Planning,2008
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. SoK: Decentralized Storage Network;High-Confidence Computing;2024-09