Hybrid vibration and rest-to-rest control of a two-link flexible robotic arm using H∞ loop-shaping control design

Author:

sayahkarajy Mostafa,Mohamed Z,Faudzi A.A.M.,Supriyanto E.

Abstract

Purpose This study presents a method for simultaneous motion and vibration control of light-weight slender robotic arms, known as flexible manipulators. In this paper, a new control algorithm is proposed for a two-link manipulator with elastic links. Design/methodology/approach The controller includes a MIMO H∞ Loop-Shaping Design (H∞LSD) as the feedback controller, and a command pre-shaping filter as the feed-forward controller. The conventional inputs and outputs of a typical two-link manipulator , that consists of the torques applied by the actuators at the joints, and the joint angles are chosen for the feedback control. Findings It is shown that by selecting a proper desired loop shape, the H∞LSD is able to control the joint angles of the manipulator, and simultaneously, suppress vibrations of the system so that the high frequency chatter due to the structural vibration modes does not appear at the outputs. Then it is shown that when the H∞LSD is equipped with a command pre-shaping filter, more efficient suppression of the chatter at the tip of the manipulator is achieved. The capability and effectiveness of the proposed control strategy in driving and stabilizing the manipulator to desired positions and simultaneously suppressing structural vibrations is shown by the simulation of the flexible manipulator in rest-to-rest maneuvers. Practical implications Flexible Manipulator, Space Manipulators Originality/value A robust MIMO controller is proposed for simultaneous motion and vibration control of flexible manipulator.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3