The airfoil design and parameter optimization of the deformable micro air vehicle

Author:

Huang ShengxianORCID,Qiu Huihe,Wang YingORCID

Abstract

PurposeSince most of the existing literature do not disclose the node coordinate data of its fixed-wing aircraft airfoil, in order to develop and obtain a practical and suitable deformation airfoil for fixed-wing micro air vehicle (MAV), this paper proposes an improved airfoil design method of fixed-wing MAV based on the profile data of S5010 airfoil.Design/methodology/approachCombined with the body shape variation of the stingray in the propulsion process, the parametric study of the aerodynamic shape of the original design airfoil is carried out to explore the influence of a single parameter change on the aerodynamic performance of the airfoil. Then, according to the influence law of single parameter variation on the aerodynamic performance of the airfoil, the original airfoil is synthetically deformed by changing multiple parameters.FindingsBy comparing the aerodynamic performance of the multi-parameter deformed airfoil with the original airfoil, it is found that the lift coefficient of the multi-parameter deformed airfoil changes from negative to positive value when AOA = 0°. When AOA = 2°, the lift coefficient growth rate is the largest, which is 47.27%, and the lift-to-drag ratio is increased by 50.00%. At other angles of attack, the lift, drag, and torque coefficients of the multi-parameter deformed airfoil are optimized to some extent.Originality/valueCombined the body shape variation of the stingray in the propulsion process, the parametric study of the aerodynamic shape of the original design airfoil is carried out to explore the influence of a single parameter change on the aerodynamic performance of the airfoil.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3